Developmental basis of limb evolution.
نویسنده
چکیده
Can developmental processes account for vertebrate limb homology, the overall similarity of definitive limb structure despite differences in different taxa which often relate to evolutionary adaptations? Relevant evidence is from molecular studies, from 'cut & paste' experimental embryology and from classical descriptive accounts of embryology and structure. There is striking evidence of a similar pattern of homologous regulatory gene expression (eg Shh, and Hox A & D genes) in tetrapod limb buds, and both similarity and differences when these are compared with expression patterns in a teleost fish paired fin bud. But these findings are as yet from too few tetrapod species (chick and mouse) to permit a 'molecular bauplan' for the limb to be proposed with any certainty. Further, the identification of similar networks of regulatory genes common to non-homologous developmental systems limits possibilities for finding a basis for classical structural homology in terms of expression of system-specific genes or gene networks. An integrated approach is needed, combining evidence from the fin-limb transition, and from study of the patterns and processes of amphibian and avian limb embryology, and this points towards a conserved developmental bauplan for the pentadactyl skeleton of the type earlier proposed by Alberch. Key features include the digital arch, restriction of digit number to a maximum of 5 and stereotyped connections between prechondrogenic condensations. But this is a dynamic and not rigidly fixed bauplan. It has no single set of skeletal elements (except proximally), since the position of joint formation in the prechondrogenic condensations is not stereotyped. Urodele amphibians in particular demonstrate heterochronic differences in the timing of events. Heterochrony may underlie some of the important changes in the pentadactyl pattern during evolution.
منابع مشابه
Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis.
Loss of limb skeletal elements is a recurring theme in tetrapod evolution, but the developmental mechanisms underlying this phenomenon remain largely unknown. The Australian lizard genus Hemiergis offers an excellent model system to study limb reduction among closely related, naturally occurring populations with different numbers of digits. Evolutionary digit loss in Hemiergis does not result f...
متن کاملDevelopmental basis of limb length in rodents: evidence for multiple divisions of labor in mechanisms of endochondral bone growth.
Mammals are remarkably diverse in limb lengths and proportions, but the number and kind of developmental mechanisms that contribute to length differences between limb bones remain largely unknown. Intra- and interspecific differences in bone length could result from variations in the cellular processes of endochondral bone growth, creating differences in rates of chondrocyte proliferation or hy...
متن کاملGenetic and developmental bases of serial homology in vertebrate limb evolution.
Two sets of paired appendages are a characteristic feature of the body plan of jawed vertebrates. While the fossil record provides a good morphological description of limb evolution, the molecular mechanisms involved in this process are only now beginning to be understood. It is likely that the genes essential for limb development in modern vertebrates were also important players during limb ev...
متن کاملDevelopmental evolution: This side of paradise
It has long been appreciated that the evolution of snakes involved the loss of limbs and axis elongation, but their developmental basis has been obscure. It has now been shown that alterations in the deployment of Hox genes and an early block in the formation of hindlimb primordia underpin these modifications.
متن کاملInvestigating the independent evolution of the size of floral organs via G-matrix estimation and artificial selection.
The attractiveness of a plant to pollinators is dependent on both the number of flowers produced and the size of the petals. However, limiting resources often result in a size/number trade-off, whereby the plant can make either more flowers or larger flowers, but not both. If developmental genes underlying sepal and petal identity (some of which overlap) also influence size, then this shared ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of developmental biology
دوره 46 7 شماره
صفحات -
تاریخ انتشار 2002